
Fawn Write-up
Prepared by: 0ne-nine9

Introduction
Sometimes, when we are asked to enumerate the services of specific hosts on the client network, we will be
met with file transfer services that may have high chances to be poorly configured. The purpose of this
exercise is to familiarize yourself with the File Transfer Protocol (FTP), a native protocol to all host operating
systems and used for a long time for simple file transfer tasks, be they automated or manual. FTP can be
easily misconfigured if not correctly understood. There are cases where an employee of the client company
we are assessing might want to bypass file checks or firewall rules for transferring a file from themselves to
their peers. Considering the many different mechanisms for controlling and monitoring data flow within an
enterprise network today, this scenario becomes a substantial and viable case we might meet in the wild.

At the same time, FTP can be used to transfer log files from one network device to another or a log
collection server. Suppose the network engineer in charge of handling the configuration forgets to secure
the receiving FTP server properly or does not put enough importance on the information contained within
the logs and decides to leave the FTP service unsecured intentionally. In that case, an attacker could gain
leverage of the logs and extract all kinds of information from them, which can later be used to map out the
network, enumerate usernames, detect active services, and more.

Let's take a look at what FTP is, according to definition on Wikipedia:

From the first lines of the excerpt above, we can see mention of the client-server model architecture. This
refers to the roles hosts in the network have during the act of transferring data between them. Users can
download and upload files from the client (their own host) to the server (a centralized data storage device)
or vice versa. Conceptually speaking, the client is always the host that downloads and uploads files to the
server, and the server always is the host that safely stores the data being transferred.

The File Transfer Protocol (FTP) is a standard communication protocol used to transfer

computer files from a server to a client on a computer network. FTP is built on a

client–server model architecture using separate control and data connections between

the client and the server. FTP users may authenticate themselves with a clear-text

sign-in protocol, generally in the form of a username and password. However, they can

connect anonymously if the server is configured to allow it. For secure transmission

that protects the username and password and encrypts the content, FTP is often secured

with SSL/TLS (FTPS) or replaced with SSH File Transfer Protocol (SFTP).

https://en.wikipedia.org/wiki/File_Transfer_Protocol

Clients can also browse the available files on the server when using the FTP protocol. From a user's terminal
perspective, this action will seem like browsing their own operating system's directories for files that they
need. FTP services also come with a GUI (Graphical User Interface), akin to Windows OS Programs, enabling
easier navigation for beginners. An example of a well-known GUI-oriented FTP Service is FileZilla. However,
let's first understand what it means for a port to be running a service openly.

A port running an active service is a reserved space for the IP address of the target to receive requests and
send results from. If we only had IP addresses or hostnames, then the hosts could only do 1 task at a time.
This means that if you wanted to browse the web and play music from an application on your computer
simultaneously, you could not, because the IP address would be used for handling either the first or the
latter, but not both at the same time. By having ports, you can have one IP address handling multiple
services, as it adds another layer of distinction.

In the case shown below, we can see FTP being active on port 21. However, let's add some extra services like
SSH (Secure Shell Protocol) and HTTPD (Web Server) in order to explore a more typical example. With this
type of configuration, a network administrator has set up a rudimentary core web server configuration,
allowing them to achieve the following, all at the same time if need be:

Receive and send files that can be used to configure the webserver or serve logs to an external source
Be able to be logged into for remote management from a distant host, in case any configuration
changes are needed
Serve web content that can be accessed remotely through another host's web browser

From the graph below, you can see where FTP sits in the logical structure of the host, together with other
services that could potentially be running on it at the same time.

https://filezilla-project.org/

The Wiki article shows that it is considered non-standard for FTP to be used without the encryption layer
provided by protocols such as SSL/TLS (FTPS) or SSH-tunneling (SFTP). FTP by itself does have the ability to
require credentials before allowing access to the stored files. However, the deficiency here is that traffic
containing said files can be intercepted with what is known as a Man-in-the-Middle Attack (MitM). The
contents of the files can be read in plaintext (meaning unencrypted, human-readable form).

However, if the network administrators choose to wrap the connection with the SSL/TLS protocol or tunnel
the FTP connection through SSH (as shown below) to add a layer of encryption that only the source and
destination hosts can decrypt, this would successfully foil most Man-in-the-Middle attacks. Notice how port
21 has disappeared, as the FTP protocol gets moved under the SSH protocol on port 22, thus being tunneled
through it and secured against any interception.

However, the situation we are dealing with in this case is much simpler. We are only going to interact with
the target running a simple, misconfigured FTP service. Let us proceed and analyze how such a service
running on an internal host would look like.

Enumeration
Firstly, let us check if our VPN connection is established. Using the ping protocol can help with this since it is
a low-overhead method of reaching the target to get a response, thus confirming our connection is
established, and the target is reachable. Low-overhead means that very little data is sent to the target by
default, allowing us to quickly check the status of the connection without having to wait for a whole scan to
complete beforehand. The ping protocol can be invoked from the terminal using the ping {target_IP}
command, where {target_IP} is the IP address of your instance of the Fawn machine, as displayed on the
Hack The Box webpage, under the Starting Point lab.

Note that this might not always work in a large-scale corporate environment, as firewalls usually have rules
to prevent pinging between hosts, even in the same subnet (LAN), to avoid insider threats and discover
other hosts and services.

We can cancel the ping command by pressing CTRL+C on our keyboard, otherwise it will run infinitely.
Following the output from the command, we can see that responses are being received from the target
host. This means that the host is reachable through the VPN tunnel we formed. We can now start scanning
the open services on the host.

Scanning using our previously used command, we can see the FTP service open and running on port 21.
However, what if we would like to know the actual version of the service running on this port? Could
scanning it with different switches present us with the needed information?

In our case, the -sV switch stands for version detection. Using this switch will consequently make our scan
take longer but will offer us more insight into the version of the service running on the previously detected
port. This means that at a glance, we would be able to tell if the target is vulnerable due to running outdated
software or if we need to dig deeper to find our attack vector.

We will not be looking at exploiting the service per sé. We will take small steps towards our goals, and the
next one will involve simply interacting with the service as-is to learn more about how we should approach
targets. However, having the service version always helps us gain more insight into what is running on the
scanned port.

Foothold
It is time we interacted with the target.
In order to access the FTP service, we will use the ftp command on our own host. It's good practice to have
a quick check that your ftp is up to date and installed properly. Running the command below will display
the same output as pictured if your ftp service is installed. Otherwise, it will continue with the installation.
The -y switch at the end of the command is used to accept the installation without interrupting the process
to ask you if you'd like to proceed.

After it has done installing, you can run the ftp -h command to see what the service is capable of.

From the excerpt above, we can see that we can connect to the target host using the command below. This
will initiate a request to authenticate on the FTP service running on the target, which will return a prompt
back to our host:

The prompt will ask us for the username we want to log in with. Here is where the magic happens.

A typical misconfiguration for running FTP services allows an anonymous account to access the service like
any other authenticated user. The anonymous username can be input when the prompt appears, followed
by any password whatsoever since the service will disregard the password for this specific account.

Hitting Enter after filling in the password, we can see that we are logged in successfully. Our terminal
changes in order to show us that we can now issue ftp commands.

Typing in the help command allows us to view which commands are available. You will be able to see this
pattern with every script and service that you have access to. Typing either the -h , --help , or help
commands will always issue a list of all the commands available to you as a user, with descriptions
occasionally included. If you would like to learn about a specific command in more depth, you can use a
different command: man {commandName} . However, for now, let us get back to our target.

Some of the commands listed here seem familiar to us. We already know how to use ls and cd . Let us
issue the first command and view the contents of the folder.

As you can notice from the output, the operation of FTP services also issue the status for the commands you
are sending to the remote host. The meaning of status updates are as follows:

Now, we can proceed to download the flag.txt to our host (Virtual Machine). In order to do so, we can
use the get command, followed by the name of the file we want to download. In our case, it would look like
this:

This will trigger the download of the file to the same directory you were in when you issued the ftp
{machineIP} command. If we exit the FTP service, we will see the same file on our host now.

200 : PORT command successful. Consider using PASV.

150 : Here comes the directory listing.

226 : Directory send OK.

We can now take the flag and submit it on the platform in order to own the box!

Nice work!

	Fawn Write-up
	Introduction
	Enumeration
	Foothold

