
Preignition Write-up
Prepared by: 0ne-nine9

Introduction
In most environments, web servers play a big part in the infrastructure and in the daily processes of many
departments. Web servers can sometimes be used strictly internally by employees, but most of the time can
be found to be public-facing, meaning anyone from the Internet can access them to retrieve information
and files from their hosted web pages. For the most part, the web pages hosted on the web servers are
managed through their administrative panels, locked behind a log-in page. Let us think of an example:

You have decided to start your own blog and use WordPress to achieve this. If you are unfamiliar with
WordPress, you can read more about it here, but it is essentially a popular web application that allows you
to easily manage the content you want to post for the rest of the world to read. Once installed, your
WordPress website will have a public-facing side and a private-facing one, the latter being your
administrative panel hosted at www.yourwebsite.com/wp-admin . This page is locked behind a log-in
screen.

A quick note: you can learn more about hacking WordPress websites by checking out the Hacking
WordPress module on HTB Academy!

https://wordpress.com/
https://academy.hackthebox.eu/module/details/17

Once you, as an administrator of the WordPress site, log into its' admin panel, you will have access to a
myriad of controls, ranging from content uploading mechanisms, to theme selection, custom script editing
for specific pages, and more. The more you learn about WordPress, the more you will see how this is a vital
part of a successful pentest, as some of these mechanisms could be outdated and come with critical flaws
that would allow an attacker to gain a foothold and subsequently pivot through the network with ease.

Thus, we conclude that Web enumeration, specifically directory busting (dir busting), is one of the most
essential skills any Penetration Tester must possess. While manually navigating websites and clicking all the
available links may reveal some data, most of the links and pages may not be published to the public and,
hence, are less secure. Suppose we did not know the wp-admin page is the administrative section of the
WordPress site we exemplified above. How else would we have found it out if not for web enumeration and
directory busting?

Enumeration
As previously, we start by verifying connectivity to the target. We can take the IP address of the target
machine from the Starting Point lab page and paste it into the terminal and fire-up the ping command as a
first step. After two successful replies, we can interrupt the ping command, as we are satisfied with the
connection quality. We do not always need to run commands for a long time. Sometimes, getting a snippet
of the result or an overview instead of a detailed report is more beneficial to our time efficiency than the
alternative.

Immediately after, we can follow up with a preliminary scan of the target. Using nmap and the appropriate
service version detection switch, we scan the IP address for any open ports and services.

-sV : Probe open ports to determine service/version info

From the scan result, a single entry is shown and catches our attention. It is an http service running on port
80, signaling that this target might be hosting some explorable web content. To look at the contents
ourselves, we can open a web browser of our choice and navigate to the target's IP address in the URL bar
at the top of the window. This will automatically address the target's port 80 for the client-server
communication and load the web page's contents.

At the top of the page, we observe the mention of the nginx service. After researching basic information
about nginx and its purpose, we conclude that our target is a web server. Web servers are hosts on the
target network which have the sole purpose of serving web content internal or external users, such as web
pages, images, videos, audio files, and other types. Typically, a web server is accessible from the Internet to
allow for the stored content to be explored by the online public for many reasons: shopping, providing and

requesting services, banking, reading the news, and more.

What we are looking at on our browser screen is the default post-installation page for the nginx service,
meaning that there is the possibility that this web application might not be adequately configured yet, or
that default credentials are used to facilitate faster configuration up to the point of live deployment. This,
however, also means that there are no buttons or links on the web page to assist us with navigation
between web directories or other content.

When browsing a regular web page, we use these elements to move around on the website. However, these
elements are only links to other directories containing other web pages, which get loaded in our browser as
if we manually navigated to them using the URL search bar at the top of the browser screen. Knowing this,
could we attempt to find any "hidden" content hosted on this webserver?

The short answer is yes, but to avoid guessing URLs manually through the browser's search bar, we can find
a better solution. This method is called dir busting, short for directory busting. For this purpose, we will be
using the tool called gobuster , which is written in Go. If you do not have gobuster installed on your
machine yet, you can follow the instructions below to install it successfully. Pwnbox already comes pre-
equipped with gobuster and all the necessary tools to finish any lab on Hack The Box.

Installing gobuster
First, you need to make sure you have Go installed on your Linux distribution, which is the programming
language used to write the gobuster tool. Once all the dependencies are satisfied for Go, you can proceed to
download and install gobuster. In order to install Go, you need to input the following command in your
terminal window:

Once that installation is complete, you can proceed with installing gobuster. If you have a Go environment
ready to go (at least go 1.16), it is as easy as typing in the following command in your terminal:

In case this fails, you can always compile the tool from its' source code by running the following commands:

sudo apt install golang-go

go install github.com/OJ/gobuster/v3@latest

https://golang.org/

If these installation instructions are unclear, please follow the gobuster creator's readme file on everything
related to the tool by following this link.

Using gobuster
In order to start our dir busting, we will need to discover what capabilities gobuster has and which ones can
assist us. By looking at the tool's help page, by typing in the gobuster -h command in our terminal, we
receive a list of all possible switches for the tool and their description.

sudo git clone https://github.com/OJ/gobuster.git

cd gobuster

go get && go build

go install

Usage:

 gobuster dir [flags]

Flags:

 -f, --add-slash Append / to each request

 -c, --cookies string Cookies to use for the requests

 -e, --expanded Expanded mode, print full URLs

 -x, --extensions string File extension(s) to search for

 -r, --follow-redirect Follow redirects

 -H, --headers stringArray Specify HTTP headers, -H 'Header1: val1' -H

'Header2: val2'

 -h, --help help for dir

 ..[Output omitted]..

 -u, --url string The target URL

 -a, --useragent string Set the User-Agent string (default

"gobuster/3.1.0")

 -U, --username string Username for Basic Auth

 -d, --discover-backup Upon finding a file search for backup files

 --wildcard Force continued operation when wildcard found

Global Flags:

 -z, --no-progress Don't display progress

 -o, --output string Output file to write results to (defaults to stdout)

 -q, --quiet Don't print the banner and other noise

 -t, --threads int Number of concurrent threads (default 10)

 --delay duration Time each thread waits between requests (e.g. 1500ms)

https://github.com/OJ/gobuster/blob/master/README.md

In our case, we will only need to use the following:

In the wordlist we used, the entry admin.php was present, and from our results below, we can see that
there is indeed a page with the same name present on the target. What gobuster did here was make several
connection attempts to the target using the HTTP GET method (requesting web pages from the webserver)
with different URL variations, such as:

 -v, --verbose Verbose output (errors)

 -w, --wordlist string Path to the wordlist

dir : specify we are using the directory busting mode of the tool

-w : specify a wordlist, a collection of common directory names that are typically used

for sites

-u : specify the target's IP address

GET http://{target_IP}/kittens

GET http://{target_IP}/hackers

GET http://{target_IP}/admin.php

GET http://{target_IP}/hackthebox

GET http://{target_IP}/yourespecial

Out of all the variations found in the wordlist we specified, admin.php existed and was returned to us in
the output as seen below, signaling that the webpage exists and we can navigate to it manually to check out
its contents:

Now that we have received the result we needed from gobuster, we can put it away for now. If you want to
delve even deeper into directory busting and web enumeration, you can follow up with our module on HTB
Academy with Ffuf! Ffuf is just another tool like gobuster, around which we have developed a
comprehensive module on HTB Academy. If you want to learn more about web directories and other web
services, you can read up on our Attacking Web Applications with Ffuf module on HTB Academy.

https://academy.hackthebox.eu/module/details/54

Foothold
Navigating to the newly found link manually through our web browser can be done by inputting the
following address in our URL search bar. Once we proceed with this, we are met with an administrative
panel for the website. It asks us for a username and password to get past the security check, which could
prove problematic in normal circumstances.

Usually, in situations such as this one, we would need to fire up some brute-forcing tools to attempt logging
in with multiple credentials sets for an extended period of time until we hit a valid log-in since we do not
have any underlying context about usernames and passwords that might have been registered on this web
site as valid administrative accounts. But first, we can try our luck with some default credentials since this is
a fresh nginx installation. We are betting that it might have been left unconfigured at the time of our
assessment. Let us try logging in with the following credentials:

admin admin

We seem to be successful! The log-in worked, and we were presented with our flag. This concludes Tier 0,
the most elementary of targets. Do not forget to take a look at the suggested modules in HTB Academy to
get a better understanding of the tactics and vectors used so far in the assessments, and follow up with Tier
I, which will offer less detailed explanations and more technicality in the assessment process!

Congratulations!

	Preignition Write-up
	Introduction
	Enumeration
	Installing gobuster
	Using gobuster
	Foothold

